

Contact

Email:

drmadhukeshjk.fbas.smpls@gmu.ac.in

Phone: 9741558066

Websites

LinkedIn:

<https://www.linkedin.com/in/madhukesh-jk-31a39367/>, Google

Scholar:

<https://scholar.google.com/citations?user=8VKgNm0AAAAJ&hl=en>

Research Gate:

https://www.researchgate.net/profile/Jk-Madhukesh?ev=hdr_xprf

SCOPUS:

<https://www.scopus.com/authid/detail.uri?authorId=57222709395>

PUBLONS ID: AAL-5436-2021

Dr. MADHUKESH J K

Assistant Professor, Department of Mathematics.

Faculty

Faculty of Basic and Applied Science

School / Program

School of Mathematical and Physical Sciences.

Faculty Introduction

Dr. Madhukesh J K received a Master's degree from Davangere University, Karnataka, India in 2015. He completed his Ph.D. degree from Davangere University, Karnataka, India under the guidance of Dr. B C Prasannakumara, in 2023. He completed his PostDoc Fellowship from Amrita School of Engineering, Bangalore (2023-2024). He is currently working as an assistant professor at GM University, Davangere. Dr. Madhukesh J K published more than 130 Research articles in reputed Scopus indexed journals, one book and two book chapter with h-index 34 and i10-index 84 and his works are cited over 3324 (present). His name has been included in Stanford University's List of the World's Top 2% of Scientists during the calendar year 2022, 2023 and 2024. His main area of research includes boundary layer flow, mathematical modeling, fluid and solid mechanics, Artificial Neural networks and optimization techniques.

Qualifications

Post-Doctoral Fellow. (Fluid Mechanics)

Amrita School of Engineering, Bangalore, 2023-2024

Ph.D. (Fluid Mechanics)

Davangere University, Davanagere, 2023

M.Sc. (Mathematics)

Davangere University, Davanagere, Karnataka 2015

B.Ed. (Physics-Mathematics)

B.E.A College of Education, Davanagere, 2017

B.Sc. (PMCs)

Govt. First grade college, Davanagere, Karnataka 2013

Experience

Teaching

- 8.5 years.
- Lecturer at Siddaganaga PU Science College (2015-2016).
- Lecturer at SLPU Science college (2018-2019)
- Assistant Professor at DRM Science college (2019-2020)
- Post-Doctoral Fellow at Amrita School of Engineering (2023-2024)
- Assistant Professor at GM University (from 2024 – Present)

Research

- Fluid Mechanics
- Newtonian and non-Newtonian nanofluids.
- Heat and Mass transfer
- Numerical Simulation
- Artificial Neural Networks
- Optimization techniques

Training Program Attended

- Participated in 8 days workshop on “Computational Fluid Dynamics simulation using COMSOL Multiphysics software” held from 8th September to 15th September 2023 at REVA University, Bengaluru, Karnataka, INDIA.
- Participated in 2 days FDP on “Porous Medium – Theory to Industrial Applications” held from 29-01-2024 to 01-02-2024 at Government Engineering College, Haveri, Karnataka, INDIA.

Research Interest

- Fluid Mechanics
- Newtonian and non-Newtonian nanofluids.
- Heat and Mass transfer
- Numerical Simulation
- Artificial Neural Networks
- Optimization techniques

Awards & Achievements

- My name has been included in Stanford University's List of the World's Top 2% of Scientists during the calendar year 2022, 2023 and 2024.
- INDIA Top cited paper award 2023, physics, one of the top 1% most cited papers in IOP Publishing's portfolio of journals from 2020-22 for the article. “Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle.”
- Received Chancellor's Research Excellence Award and honored by Dr. Akhilesh Gupta, Secretary, Science and Engineering Board (SERB), Govt. of India.

Publication / Patents

- Ph.D. Dissertation: Computational Modelling of Boundary Layer Flow of Nanofluid
- National Conference Papers:
- International Conference Papers:
- National Journal Papers:
- International Journal Papers: 130*
- **J. K. Madhukesh**, F. Sahar, B. C. Prasannakumara, and S. A. Shehzad, "Waste discharge concentration and quadratic thermal radiation influences on time-dependent nanofluid flow over a porous rotating sphere," *Numerical Heat Transfer, Part B: Fundamentals*, vol. 86, no. 7, pp. 2357–2375, Jul. 2025, doi: 10.1080/10407790.2024.2336205.
- K. Vinutha et al., "Use of wavelet-based neural networks for optimization of heat and mass transfer radiative hybrid nanofluid over a nonlinear stretching surface," *Advances in Mechanical Engineering*, vol. 17, no. 9, p. 16878132251371755, Sep. 2025, doi: 10.1177/16878132251371755.
- S. S et al., "Triple diffusive convection in a fluid layer under an A.C electric field," *Advances in Mathematical Physics*, vol. 2025, no. 1, Jan. 2025, doi: 10.1155/admp/9963822.
- G. K. Ramesh, **J. K. Madhukesh**, R. Das, N. A. Shah, and S.-J. Yook, "Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink," *Waves in Random and Complex Media*, vol. 35, no. 2, pp. 3499–3519, Mar. 2025, doi: 10.1080/17455030.2022.2053237.
- **J. K. Madhukesh**, G. K. Ramesh, and Y. B. Revadakundi, "Thermal transport analysis of ternary hybrid nanofluid flow over a vertical cylinder with thermal radiation and chemical reaction," *Thermal Advances.*, p. 100040, Apr. 2025, doi: 10.1016/j.thradv.2025.100040. Available:
<https://www.sciencedirect.com/science/article/pii/S3050463525000199>
- G. S. Roopa, C. S. Vishalakshi, **J. K. Madhukesh**, and G. K. Ramesh, "Thermal investigation of Tiwari–Das and Xue nanofluid model on space and thermal-dependent heat source/sink over a spinning disk: A numerical study," *Numerical Heat Transfer, Part A: Applications*, pp. 1–16, Jun. 2025, doi: 10.1080/10407782.2025.2522315.
- U. Khan et al., "Thermal Conductivity Evaluation of Radiative Entropy Optimized Cross-Flow in Eyring–Powell Nanofluid Past a Permeable Deformable Sheet: The Case of Solar-Powered Ship Application," *NANO*, vol. 20, no. 02, p. 2450101, Feb. 2025, doi: 10.1142/S1793292024501017.
- **J. K. Madhukesh**, G. K. Ramesh, and Y. B. Revadakundi, "Thermal transport analysis of ternary hybrid nanofluid flow over a vertical cylinder with thermal radiation and chemical reaction," *Thermal Advances.*, p. 100040, Apr. 2025, doi: 10.1016/j.thradv.2025.100040. Available:
<https://www.sciencedirect.com/science/article/pii/S3050463525000199>

- F. N. Jamrus et al., "Stability scrutinization of a non-Newtonian (Williamson) ternary hybrid nanofluid past a stretching/shrinking sheet," *Z Angew Math Mech*, vol. 105, no. 2, p. e202300926, Feb. 2025, doi: 10.1002/zamm.202300926.
- V. Singh, N. B. Naduvinamani, K. Vinutha, B. C. Prasannakumara, **J. K. Madhukesh**, and A. Abdulrahman, "Sodium alginate-based MHD ternary nanofluid flow across a cone and wedge with exothermic/endothermic chemical reactions: A numerical study," *Numerical Heat Transfer, Part A: Applications*, vol. 86, no. 22, pp. 7919–7938, Nov. 2025, doi: 10.1080/10407782.2024.2355520.
- R. P. Sharma, P. Srilatha, M. U. Hassan, U. Khan, **J. K. Madhukesh**, and S. Shukla, "Scrutinization of nanoparticle aggregation in the reactive dynamics of heat transport phenomenon with buoyancy forces," *Z Angew Math Mech*, vol. 105, no. 5, p. e70010, May 2025, doi: 10.1002/zamm.70010.
- M. R. Gombi et al., "Repercussions of Nanofluid Flow and Internal Heat Generation Radiation on a Spiral Porous Fin with Variable Thermal Conductivity," *Partial Differential Equations in Applied Mathematics*, p. 101211, Apr. 2025, doi: 10.1016/j.padiff.2025.101211. Available: <https://www.sciencedirect.com/science/article/pii/S266681812500138X>
- K. Vinutha, **J. K. Madhukesh**, N. Patil, and A. Abdulrahman, "Numerical analysis of heat and mass transfer in off-centered stagnation point Casson fluid flow over a rotating disc with thermophoretic particle deposition and artificial neural network-based optimization," *Engineering Applications of Artificial Intelligence*, vol. 160, p. 112041, Aug. 2025, doi: 10.1016/j.engappai.2025.112041. Available: <https://www.sciencedirect.com/science/article/pii/S0952197625020494>
- B. M. Shettar, G. K. Ramesh, P. N. Hiremath, and **J. K. Madhukesh**, "MHD effects of oriented magnetic field on radiative Casson nanofluid flow over a stretchable surface," *Deleted Journal*, vol. 2, no. 3, May 2025, doi: 10.1063/5.0252561. Available: <https://pubs.aip.org/hgmri/ijfe/article/2/3/033101/3347665/MHD-effects-of-oriented-magnetic-field-on>
- K. Vinutha, **J. K. Madhukesh**, K. V. Prasad, A. Kulshreshta, N. A. Shah, and M. Yar, "MHD Casson nanofluid flow over a three-dimensional exponentially stretching surface with waste discharge concentration: A revised Buongiorno's model," *Applied Rheology*, vol. 35, no. 1, p. 20250040, Apr. 2025, doi: 10.1515/arh-2025-0040.
- G. K. Ramesh, **J. K. Madhukesh**, P. N. Hiremath, and E. H. Aly, "Magnetized nanofluid flowing across an inclined microchannel with heat source/sink and temperature jump: Corcione's model aspects," *Mod. Phys. Lett. B*, vol. 39, no. 22, p. 2550073, Aug. 2025, doi: 10.1142/S0217984925500733.
- U. Khan et al., "Irreversibility analysis of cross-flow in Eyring–Powell nanofluid over a permeable deformable sheet with Lorentz forces," *Z Angew Math Mech*, vol. 105, no. 2, p. e202300835, Feb. 2025, doi: 10.1002/zamm.202300835.
- J. Madhu et al., "Influence of waste discharge concentration and quadratic thermal radiation over oblique stagnation point Boger hybrid nanofluid flow across a cylinder," *Z Angew Math Mech*, vol. 105, no. 3, p. e202300929, Mar. 2025, doi: 10.1002/zamm.202300929.

- K. Karthik, **M. J K**, S. Kiran, N. K V, B. C. Prasannakumara, and G. Fehmi, "Impacts of thermophoretic deposition and thermal radiation on heat and mass transfer analysis of ternary nanofluid flow across a wedge," International Journal of Modelling and Simulation, vol. 45, no. 5, pp. 1688–1700, Sep. 2025, doi: 10.1080/02286203.2023.2298234.
- K. Vinutha et al., "Impact of Autocatalytic Chemical Reactions and Convective Boundary Conditions on NaC₆H₇O₆–SiO₂ -Based Nanofluid Oblique Stagnation Point Flow Across a Stretching Sheet," NANO, vol. 20, no. 03, p. 2450097, Mar. 2025, doi: 10.1142/S1793292024500978.
- A. Rauf, G. K. Ramesh, S. Fatima, S. A. Shehzad, **J. K. Madhukesh**, and M. K. Siddiq, "Horizontal Magnetic Field Influence on Fluid Flow Across a Variable Thickness Rotating Disk With Stretching and Melting Phenomenon," Heat Trans, vol. 54, no. 3, pp. 2184–2193, May 2025, doi: 10.1002/htj.23285.
- J. Madhu, **J. K. Madhukesh**, K. V. Prasad, and A. Kulshreshtha, "Exact solutions for nanoparticle aggregation and porous medium effects over a stretching surface," Multiscale and Multidiscip. Model. Exp. and Des., vol. 8, no. 2, p. 134, Feb. 2025, doi: 10.1007/s41939-024-00724-9.
- R. Ashrith et al., "Endothermic and exothermic reactions and stagnation point nanofluid flow over a porous stretched surface with a revised Buongiorno model," South African Journal of Chemical Engineering, Feb. 2025, doi: 10.1016/j.sajce.2025.02.003. Available: <https://www.sciencedirect.com/science/article/pii/S1026918525000149>
- **J. K. Madhukesh** and G. K. Ramesh, "Effectiveness of kerosene/water conveying ternary (Cu–SiO₂ –Al₂O₃) nanoparticles flowing in vertical cylinder subjected to a melting phenomenon," Journal of Taibah University for Science, vol. 19, no. 1, p. 2466870, Dec. 2025, doi: 10.1080/16583655.2025.2466870.
- H. A. H. Alzahrani, A. Alsaiari, **J. K. Madhukesh**, R. Naveen Kumar, and B. M. Prasanna, "Effect of thermal radiation on heat transfer in plane wall jet flow of Casson nanofluid with suction subject to a slip boundary condition," Waves in Random and Complex Media, vol. 35, no. 1, pp. 1212–1229, Jan. 2025, doi: 10.1080/17455030.2022.2030502.
- K. Vinutha, K. Sajjan, B. Kanabar, **J. K. Madhukesh**, and A. Abdulrahman, "Crank–Nicolson finite-difference method for analysing pollutant discharge in nanofluid mixed convection systems," Pramana - J Phys, vol. 99, no. 3, p. 129, Aug. 2025, doi: 10.1007/s12043-025-02989-2.
- **J. K. Madhukesh**, B. C. Prasannakumara, M. Kouki, and N. A. Shah, "Crank Nicolson and response surface methodology-based simulation to analyze the thermophoretic particle deposition of nanofluids over an infinite porous plate under mixed convection: a sensitivity analysis," J Therm Anal Calorim, Oct. 2025, doi: 10.1007/s10973-025-14816-2.
- T. G. K, N. K V., B. Kanabar, S. V, K. Vinutha, and **M. J. K**, "Combined effects of thermal radiation and thermophoretic particle deposition in stagnation point flow over Howarth's wavy porous circular cylinder," International Journal of Thermofluids, p. 101271, May 2025, doi: 10.1016/j.ijft.2025.101271. Available: <https://www.sciencedirect.com/science/article/pii/S2666202725002186>

- K. Vinutha, P. Srilatha, A. Zaib, **J. K. Madhukesh**, U. Khan, and M. U. Hassan, "Aspects of elastic deformation and nanomaterials past a deviating cone and wedge elongational surfaces driven by a waste discharge concentration," *Z Angew Math Mech*, vol. 105, no. 1, p. e202400452, Jan. 2025, doi: 10.1002/zamm.202400452.
- **J. K. Madhukesh** and G. K. Ramesh, "ANOVA-based Taguchi approach to optimise the rate of heat transport for the magnetised nanofluid across an exponential surface," *Chemometrics and Intelligent Laboratory Systems*, vol. 265, p. 105494, Jul. 2025, doi: 10.1016/j.chemolab.2025.105494. Available: <https://www.sciencedirect.com/science/article/abs/pii/S0169743925001790>
- K. Vinutha, **J. K. Madhukesh**, K. V. Prasad, A. Kulshreshta, N. A. Shah, and M. Yar, "MHD Casson nanofluid flow over a three-dimensional exponentially stretching surface with waste discharge concentration: A revised Buongiorno's model," *Applied Rheology*, vol. 35, no. 1, Jan. 2025, doi: 10.1515/arh-2025-0040.

Professional Membership

- International Association of Engineers. (Membership No. 289872) (Life Member)

Awards & Recognitions

- Received Chancellor's Research Excellence Award and honoured by Dr. Akhilesh Gupta, Secretary, Science and Engineering Board (SERB), Govt. of India.
- Editorial Member for Scientific Reports - Nature Portfolio.

Administrative Responsibilities

- **Department Level:** Research Coordinator, Proctor.
- **University Level:** ERP Coordinator, PG Manager.

Workshops / FDPs / Seminars Attended

- Vibrant Advocacy for Advancement and Nurturing of Indian Languages (VAANI) on Sustainable Development and Future trends: Innovations in AI and Quantum Technology.
- Advanced Mathematical Applications – D.R.M Science College, Davangere.

Workshops / FDPs / Seminars Organized

- Two Days National Webinar Series on Recent Developments in Mathematics – 2021 (NWSRDM-2021) at Davangere University.

Projects Guided

- UG Projects: 03
- PG Projects: 04

Funded Projects / Grants Received

- Nil

Any Other Contributions